53 research outputs found

    Prognostic significance of CD26 in patients with colorectal cancer

    Get PDF
    Background: CD26, dipeptidyl peptidase IV, was discovered firstly as a membrane-associated peptidase on the surface of leukocyte. We previously demonstrated that a subpopulation of CD26+ cells were associated with the development of distant metastasis, enhanced invasiveness and chemoresistance in colorectal cancer (CRC). In order to understand the clinical impact of CD26, the expression was investigated in CRC patient's specimens. This study investigated the prognostic significance of tumour CD26 expression in patients with CRC. Examination of CD26+ cells has significant clinical impact for the prediction of distant metastasis development in colorectal cancer, and could be used as a selection criterion for further therapy. Methods: Tumour CD26 expression levels were studied by immunohistochemistry using Formalin-fixed paraffin embedded (FFPE) tissues in 143 patients with CRC. Tumour CD26 expression levels were correlated with clinicopathological features of the CRC patients. The prognostic significance of tumour tissue CD26 expression levels was assessed by univariate and multivariate analyses. Result: CD26 expression levels in CRC patients with distant metastasis were significantly higher than those in non-metastatic. High expression levels of CD26 were significantly associated with advanced tumour staging. Patients with a high CD26 expression level had significantly worse overall survival than those with a lower level (p<0.001). Conclusions: The expression of CD26 was positively associated with clinicopathological correlation such as TNM staging, degree of differentiation and development of metastasis. A high CD26 expression level is a predictor of poor outcome after resection of CRC. CD26 may be a useful prognostic marker in patients with CRC. © 2014 Lam et al.published_or_final_versio

    Reanalysis of cancer mortality in Japanese A-bomb survivors exposed to low doses of radiation: bootstrap and simulation methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Commission on Radiological Protection (ICRP) recommended annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with non-linear dose response. Questions were raised regarding statistical inference with this model.</p> <p>Methods</p> <p>Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span Study are analysed with Poisson regression models incorporating latency, allowing linear and non-linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa) methods and simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR) and tests against the linear model.</p> <p>Results</p> <p>The linear model shows significant large, positive values of ERR for liver and urinary cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the optimal latencies for the stomach (11.89 years), liver (36.9), lung (13.6), leukaemia (23.66), and pancreas (11.86) and across broad latency ranges. Confidence Intervals for ERR are comparable using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose) are obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range.</p> <p>Conclusion</p> <p>Liver and urinary cancer mortality risk is significantly raised using a latency model with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung, pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the pancreas, similar estimates of latency and risk from 10 mSv are obtained from the 0 - 20 mSv and 5 - 500 mSv subcohorts. Large and significant cancer risks for Japanese survivors exposed to less than 20 mSv external radiation from the atomic bombs in 1945 cast doubt on the ICRP recommended annual occupational dose limit.</p

    Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    Get PDF
    BACKGROUND:Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. METHODOLOGY/PRINCIPAL FINDINGS:We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. CONCLUSION /SIGNIFICANCE:This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence

    Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice

    Get PDF
    BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota

    Histone acetylome-wide associations in immune cells from individuals with active Mycobacterium tuberculosis infection

    Get PDF
    Host cell chromatin changes are thought to play an important role in the pathogenesis of infectious diseases. Here we describe a histone acetylome-wide association study (HAWAS) of an infectious disease, on the basis of genome-wide H3K27 acetylation profiling of peripheral blood granulocytes and monocytes from persons with active Mycobacterium tuberculosis (Mtb) infection and healthy controls. We detected >2,000 differentially acetylated loci in either cell type in a Singapore Chinese discovery cohort (n = 46), which were validated in a subsequent multi-ethnic Singapore cohort (n = 29), as well as a longitudinal cohort from South Africa (n = 26), thus demonstrating that HAWAS can be independently corroborated. Acetylation changes were correlated with differential gene expression. Differential acetylation was enriched near potassium channel genes, including KCNJ15, which modulates apoptosis and promotes Mtb clearance in vitro. We performed histone acetylation quantitative trait locus (haQTL) analysis on the dataset and identified 69 candidate causal variants for immune phenotypes among granulocyte haQTLs and 83 among monocyte haQTLs. Our study provides proof-of-principle for HAWAS to infer mechanisms of host response to pathogens

    The scale and dynamics of COVID-19 epidemics across Europe

    No full text
    The number of COVID-19 deaths reported from European countries has varied more than 100-fold. In terms of coronavirus transmission, the relatively low death rates in some countries could be due to low intrinsic (e.g. low population density) or imposed contact rates (e.g. non-pharmaceutical interventions) among individuals, or because fewer people were exposed or susceptible to infection (e.g. smaller populations). Here, we develop a flexible empirical model (skew-logistic) to distinguish among these possibilities. We find that countries reporting fewer deaths did not generally have intrinsically lower rates of transmission and epidemic growth, and flatter epidemic curves. Rather, countries with fewer deaths locked down earlier, had shorter epidemics that peaked sooner and smaller populations. Consequently, as lockdowns were eased, we expected, and duly observed, a resurgence of COVID-19 across Europe

    Supporting Time-Critical Decision Making with Real Time Simulations

    No full text

    Generating Continuous Random Variates

    No full text
    • 

    corecore